Preview

Laser Medicine

Advanced search

2011-2021 – Ten more years of development of laser medical equipment and technologies

https://doi.org/10.37895/2071-8004-2021-25-2-63-74

Abstract

The article presents a review on laser medical equipment and laser medical technologies developed for this equipment which have appeared for the last ten years.

About the Author

V. P. Minaev
NTO “IRE-Polus”
Russian Federation

Minaev Vladimir – Cand. Sci. (Tech.), Chief Researcher in the Department of Laser Technologies in medicine

Fryazino



References

1. Minaev V.P. Laser devices for surgery and power therapy: Yesterday, today, tomorrow. Lazernaya medicina. 2012; 16 (3): 57–65. [In Russ.]

2. Privalov V.A., Krochek I.V., Lappa A.V. Laser osteoperforation in osteomyelitis. Chelyabinsk: Publishing house “Chelyabinsk State Medical Academy”; 2010: 272. [In Russ.]

3. Abushkin I.A., Privalov V.A., Lappa A.V., et al. Fiber 1.56- 1.9 μm lasers in treatment of vascular malformations in children and adults. Proc. SPIE 8565, Photonic Therapeutics and Diagnostics IX. 2013; 8565. DOI: 10.1117/12.2003405

4. Pinto M., Kikuchi R., Lyra L., et al. Endovenous laser ablation of the great saphenous vein comparing 1920-nm and 1470-nm diode laser. Int Angiol. 2016; 35 (6): 599–604.

5. Ulupov M.Yu. Application of semiconductor and fiber lasers for ENT diseases. IX Petersburg Forum of Otolaryngologists of Russia. Saint Petersburg; 2020.

6. Larin S.V., Vinnichenko A.A., Filippovsky D.V., et al. Medical device “Fiberlase U1”/”Urolaz” for minimally invasive surgical intervention. Laser-inform. 2018; (11–12): 1–4. [In Russ.]

7. Startseva E.D., Kovalenko A.A., Andreeva V.A., et al. Laser device “FiberLase U2” for contact lithotripsy. Laser-inform. 2019; (11): 4–6. [In Russ.]

8. Minaev V.P., Minaev N.V., Yusupov V.I., et al. Laser-induced hydrodynamic effect in urological operations. International Conference ALT’19, Praque, Czech Republic; 2019.

9. Minaev V.P., Minaev N.V., Yusupov V.I., et al. Effect of laserinduced hydrodynamic dissection of biotissues in operative urology. Quantum electronics. 2019; 49 (4): 404–408. [In Russ.]

10. Isner J.M. Blood. In: Isner J.M., Clarke R. (eds). Cardiovascular Laser Therapy. New York: Raven Press, Ltd; 1989.

11. Lekarev V., Dymov A., Vinarov A., et al. Mechanism of lithotripsy by superpulse thulium fiber laser and its clinical efficiency. Appl Sci. 2020; 10 (21): 7480. DOI: 10.3390/app10217480

12. Martov A.G., Dutov S.V., Popov S.V., et al. Microcutaneous laser nephrolithotripsy. Urologia. 2019; (2): 76–83. [In Russ.]. DOI: 10.18565/urology.2019.2.00-00

13. Kolegov A.A., Lappa A.V., Sofienko G.S., et al. Thuliumdoped fiber lasers with direct pumping. Medical perspectives. 6th International A.M. Prokhorov Symposium on Lasers in Medicine and Biophotonics ICLO, St.-Petersburg, Russia; 2020.

14. Surin A.A., Borisenko T.E., Stirmanov Yu.S., et al. A line of high-power continuous-wave VLM lasers with radiation power from 1.5 to 20 W in the range of 513-730 nm. Laser-inform. 2018; 11–12 (626–627): 5–8. [In Russ.].

15. Larionov I.A., Gulyashko A.S., Alekseev D.A., et al. High-efficient DFG of fiber lasers radiation in the spectral region of 3um for soft tissue ablation. 6th International A.M. Prokhorov Symposium on Lasers in Medicine and Biophotonics ICLO, St.-Petersburg, Russia; 2020.

16. Niemz M.H. Laser-tissue interactions. Springer-Verlag Berlin Heidelberg, 2007: 322.

17. OptoSystems LLC. URL: https://microscan.ru/femtovisum/#operations [In Russ.]

18. Vartapetov S.K. Laser equipment for ophthalmology. Report at a scientific and practical seminar. Exhibition “Photonics – the world of lasers and optics 2010”. Moscow; 2010.

19. Ilyina I.V., Khramova Yu.V., Filatov M.A., et al. New technologies using a femtosecond laser scalpel for assisted reproductive technologies. Proceedings of the VII Troitskaya conference with international participation “Medical Physics” (TKMF-7). 19-21 October 2020, Moscow. Moscow: Publishing house of Sechenov First Moscow State Medical University (Sechenov University); 2020: 133–134. [In Russ.]

20. Haglund R.F. Applications of free electron lasers in biological sciences, medicine and material science. In: Dubowski J.J., Tanev S. (eds). Photon-based Nanoscience and Nanobiotechnology. 2006: 175–203.

21. Soldatov A.N. Multi-wavelength lasers with nanosecond pulse duration in active vapor-gas media. Fizika. 2010; 53 (2/5): 91–100. [In Russ.]

22. Ostreiko O.V., Mikhailova N.V., Novak V.D. Minimally invasive laser thermosurgery of glial brain tumors: Clinical and experimental correlations. Proceedings of the VII Troitskaya conference with international participation “Medical Physics” (TKMF-7). 19-21 October 2020, Moscow. Moscow: Publishing house of Sechenov First Moscow State Medical University (Sechenov University); 2020: 155–166. [In Russ.]

23. Minaev V.P., Samartsev I.E., Tezadov Y., et al. Raman laser with wavelength 1.68 μm for medical applications. 5th International Symposium “Fiber Lasers and Their applications”. Saint Petersburg; 2010.

24. Dymov A.M., Kovalenko A.A., Vinarov A.Z., et al. 1.56 and 1.68 fiber lasers – possible instrument for LITT in urology. Preliminary results. 4th International Symposium “Lasers in Medicine and Biophotonics”. Saint Petersburg; 2016.


Review

For citations:


Minaev V.P. 2011-2021 – Ten more years of development of laser medical equipment and technologies. Laser Medicine. 2021;25(2):63-74. (In Russ.) https://doi.org/10.37895/2071-8004-2021-25-2-63-74

Views: 1210


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2071-8004 (Print)
ISSN 2686-8644 (Online)