Preview

Laser Medicine

Advanced search

Suppression of staphylococcus aureus growth by low-intensity red laser light

https://doi.org/10.37895/2071-8004-2016-20-2-54-56

Abstract

Purpose. To study evident abilities of low-intensity red laser light with wavelength 660 μm to inhibit the growth of various strains of Staphylococcus aureus. Materials and methods. Methicillin-sensitive and methicillin-resistant strains of Staphylococcus aureus were used as studied objects. Semiconductor laser generating linear polarized light in the red spectral region (X - 660 nm) was used for irradiation. Power density was 100 mW/cm2, exposure time - 5, 10, 15 and 30 min, heat density was 30, 60, 90 and 180 J/cm2, respectively. Results. It has been found out that low-intensity laser radiation has an inhibitory effect at the growth of both methicillin-sensitive and methicillin-resistant strains of Staphylococcus aureus. The resistant strain is more sensitive to red laser light as the bacteriostatic effect is seen at lower doses.

About the Authors

G. E. Brill
ГБОУ ВПО «Саратовский государственный медицинский университет им. В.И. Разумовского» Минздрава России
Russian Federation


A. V. Egorova
ГБОУ ВПО «Саратовский государственный медицинский университет им. В.И. Разумовского» Минздрава России
Russian Federation


E. S. Tuchina
ФГБОУ ВПО «Саратовский государственный университет им. Н.Г. Чернышевского»
Russian Federation


I. O. Bugaeva
ГБОУ ВПО «Саратовский государственный медицинский университет им. В.И. Разумовского» Минздрава России
Russian Federation


O. A. Morozov
ФГБОУ ВПО «Саратовский государственный университет им. Н.Г. Чернышевского»
Russian Federation


References

1. Alves E., Faustino M.A., Neves M.G. et al. An insight on bacterial cellular targets of photodynamic inactivation // Future Med. Chem. - 2014. - 6. - P. 141-164.

2. Braga E.D., Aguiar-Alves F., de Freitas Mde F. et al. High prevalence of Staphylococcus aureus and methicillin-resistant S. aureus colonization among healthy children attending public daycare centers in informal settlements in a large urban center in Brazil. -BMC Infect. Dis., 2014. - 6 (14). - P. 538.

3. Carrel M., Schweizer M.L., Sarrazin M.V et al. Residential proximity to large numbers of swine in feeding operations is associated with increased risk of methicillin-resistant Staphylococcus aureus colonization at time of hospital admission in rural Iowa veterans // Infect. Control Hosp. Epidemiol. - 2014. - 35 (2). -P. 190-193.

4. Dadras S., Mohajerani E., Eftekhar F. и Hosseini M. Different photoresponses of Staphylococcus aureus and Pseudomonas aeruginosa to 514, 532, and 633 nm low level lasers in vitro // Curr. Microbiol. - 2006. - 53 (4). - P. 282-286.

5. de Oliveira S.C. P. S., Monteiro J.S.C., Pires-Santos G.M. et al. In vitro influence of photodynamic antimicrobial chemotherapy on Staphylococcus aureus by using phenothiazines derivatives associated with laser/LED light // Mechanisms for Low-Light Therapy IX. Ed. by M.R. Hamblin, J.D. // Carroll, Praveen Arany, Proc. of SPIE 2014. - Vol. 8932. - 89320H.

6. Grinholc M., Rapacka-Zdonczyk A., Rybak B. et al. Multiresistant strains are as susceptible to photodynamic inactivation as their naïve counterparts: protoporphyrin IX-mediated photoinactivation reveals differences between methicillin-resistant and methicillin-sensitive Staphylococcus aureus strains // Photomedicine and Laser Surgery. - 2014. - 32. - 3. - P. 121-129.

7. Grinholc M., Rodziewicz A., Forys K. et al. Fine-tuning recA expression in Staphylococcus aureus for antimicrobial photoinactivation: importance of photo-induced DNA damage in the photoinactivation mechanism // Appl. Microbiol. Biotechnol. - 2015. - Vol. 99. - P. 9161-9176.

8. Hajim K.I., Salih D.S., Rassam Y.Z. Laser light combined with a photosensitizer may eliminate methicillin-resistant strains of Staphylococcus aureus // Lasers Med Sci. - 2010. - Sep. 25 (5). - 743-748.

9. Maclean M., Macgregor S.J., Anderson J.G., Woolsey G.A. The role of oxygen in the visible-light inactivation of Staphylococcus aureus // J. Photochem. Photobiol. B. - 2008. - Vol. 92. - № 3. - P. 180-184.

10. McKinnell J.A., Miller L.G., Eells S.J. et al. A systematic literature review and meta-analysis of factors associated with methicillin-resistant Staphylococcus aureus colonization at time of hospital or intensive care unit admission // Infect. Control Hosp. Epidemiol. - 2013. - 34 (10). - P. 1077-1086.

11. Miller R.M., Price J.R., Batty E.M. et al. Healthcare-associated outbreak of meticillin-resistant Staphylococcus aureus bacteraemia: role of a cryptic variant of an epidemic clone // J. Hosp. Infect. - 2014. - 86 (2). - P. 83-89.

12. Nakonieczna J., Michta E., Rybicka M. et al. Superoxide dismutase is upregulated in Staphylococcus aureus following protoporphyrin-mediated photodynamic inactivation and does not directly influence the response to photodynamic treatment // BMC Microbiology. - 2010. - Vol. 10. - P. 323.

13. Nussbaum E.L., Lilge L. и Mazzulli T. Effects of 630-, 660-, 810-, and 905-nm laser irradiation delivering radiant exposure of 1-50 J/cm2 on three species of bacteria in vitro // J. Clin. Laser Med. Surg. - 2002. - 20 (6). - P. 325-333.

14. Rapacka-Zdonczyc A., Larsen A.R., Empel J. et al. Association between susceptibility to photodynamic oxidation and the genetic background of Staphylococcus aureus // Eur. J. Clin. Microbiol. -Infect. Dis. - 2014. - 33. - P. 577-586.

15. Wilson M., Yianni C. KiIIing of methiciIIin-resistant Staphylococcus aureus by low-power laser light // J. Med. Microbiol. - 1999. - 42. - P. 62-66.


Review

For citations:


Brill G.E., Egorova A.V., Tuchina E.S., Bugaeva I.O., Morozov O.A. Suppression of staphylococcus aureus growth by low-intensity red laser light. Laser Medicine. 2016;20(2):54-56. (In Russ.) https://doi.org/10.37895/2071-8004-2016-20-2-54-56

Views: 353


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2071-8004 (Print)
ISSN 2686-8644 (Online)