Асташов В.В.¹, Майоров А.П.², Казаков О.В.³, Малыгин М.В.³

МОРФОЛОГИЧЕСКОЕ ИССЛЕДОВАНИЕ ЭКСПЕРИМЕНТАЛЬНОЙ ОПУХОЛИ МАТКИ ПРИ ФОТОДИНАМИЧЕСКОЙ ТЕРАПИИ

- ¹ ФГБНУ «Научно-исследовательский институт медицины труда», г. Москва, Россия;
- 2 ФГБУН «Институт лазерной физики СО РАН», г. Новосибирск, Россия:
- ³ ФГБНУ «Научно-исследовательский институт клинической и экспериментальной лимфологии», г. Новосибирск, Россия

Astashov V.V., Mayorov A.P., Kazakov O.V., Malygin M.V. (Moscow, Novosibirsk, RUSSIA)

MORPHOLOGICAL STUDIES ON THE TREATMENT OF EXPERIMENTAL TUMORS IN THE UTERUS WITH PHOTODYNAMIC THERAPY

Обоснование. В настоящее время актуальна разработка точных методов доставки фотосенсибилизаторов (Φ C) к опухоли, «направленная фотодинамическая терапия».

Целью работы являлось структурное исследование экспериментальной опухоли матки и подвздошных лимфатических узлов при проведении фотодинамической терапии (ФДТ) с различными способами введения ФС.

Материалы и методы. Работа выполнена на линейных мышах-самках (СВА) с массой 17-20 г, в возрасте 3 месяцев (ФГБУН «Институт цитологии и генетики СО РАН», Новосибирск). Животных разделили на следующие группы, по 10 в каждой: 1 – интактные животные; 2 – опухоль матки; 3 – опухоль матки при внутрибрющинном (в/б,) введении ФС при ФДТ; 4 – опухоль матки при внутритканевом (лимфотропном, в/т) введении ФС при ФДТ. Опухоль моделировали путем введения в стенку правого маточного рога $6.5-7.5 \times 10^3$ клеток карциномы Эрлиха. Через 7 суток роста опухоли вводили раствор производного гематопорфирина – НрД (ПГП) (ФГУН ГНЦ ВБ «Вектор», «Институт медицинской биотехнологии») в дозе 10 мг/кг массы животного, под эфирным наркозом проводили лазерное облучение области проекции матки через 3 и 24 часа (доза – 200 Дж/см², твердотельный Nd:YAP-лазер, длина волны 608 нм, стендовая установка). Через сутки после 2-го облучения забирали для гистологического исследования фрагмент опухоли, подвздошные лимфатические узлы.

Результаты. В первичной опухоли матки при в/б введении ПГП очаги некроза составляли 42,61% от площади опухоли. На фоне в/т введения ПГП ядерно-цитоплазматическое соотношение в 1,5 раза меньше, чем в группе без коррекции, очаги некроза составляют 67,14% площади опухоли. При в/б введении ПГП площадь метастазов в лимфатическом узле по сравнению с группой без коррекции достоверно не изменяется, а при в/т площадь метастазов уменьшается на 10,04%.

Заключение. Адресная доставка фотосенсибилизатора ПГП через лимфатическую систему к очагу опухоли приводит к уменьшению тканевого и клеточного атипизма в первичной опухоли матки, сокращению площади метастазов в регионарных лимфатических узлах, уменьшению гибели животных на 5%.

Брилль Г.Е.¹, Егорова А.В.¹, Пономарев Г.В.²

ВЛИЯНИЕ КРАСНОГО ЛАЗЕРА НА РОСТ ПАТОГЕННЫХ СТАФИЛОКОККОВ И ФОТОДИНАМИЧЕСКИЙ ЭФФЕКТ ФОТОДИТАЗИНА

- ¹ Государственный медицинский университет им. В.И. Разумовского, г. Саратов, Россия;
- ² Институт биомедицинской химии им. В.Н. Ореховича РАМН,
- г. Москва, Россия

Brill G.E., Egorova A.V., Ponomarev G.V. (Saratov, Moscow, RUSSIA)

EFFECTS OF RED LASER LIGHT AT THE GROWTH OF PATHOGENIC STAPHYLOCOCCUS BACTERIA AND PHOTODITAZIN PHOTODYNAMIC EFFECT

Обоснование и цель. В связи с возрастающей лекарственной устойчивостью микробов актуальным является изыскание способов немедикаментозной ингибиции их роста. В настоящей работе изучены влияние полупроводникового красного лазера ($\lambda - 660$ нм) и эффект фотодитазина на рост стафилококков в клеточных культурах.

Материалы и методы. В работе использованы метициллин-чувствительный (MSSA) и метициллин-резистентный (MRSA) штаммы золотистого стафилококка. Микробов облучали в жидкой питательной среде. После облучения микробов высаживали на плотную питательную среду и изучали количество бактериальных колоний (КОЕ). Энергетическая экспозиция составляла 60, 90 и 180 Дж/см². В качестве фотосенсибилизатора использовали фотодитазин (5 × 10-6M).

Результаты. Опыты показали, что предварительное лазерное облучение штамма MSSA оказывает бактериостатический эффект лишь при использовании высокой дозы (180 Дж/см²), при этом ингибиция роста составила 36%, р < 0,02). Облучение штамма стафилококков MRSA вызывает отчетливый угнетающий эффект при применении всех доз облучения: при дозе 60 Дж/см^2 наблюдали угнетение роста на 56% (p < 0,05), при дозе 90 Дж/см 2 – на 61% (p < 0,05), при дозе 180 Дж/см 2 – на 67% (р < 0,02). Предварительная обработка клеток золотистого стафилококка MSSA-штамма фотодитазином заметно усиливала бактериостатический эффект лазерного излучения: облучение микробов в дозе 60 Дж/см² вызывало угнетение роста колоний на 66% (p < 0,01), 90 Дж/см² – на 73% (p < 0,001), $180 \, \text{Дж/см}^2$ – на 81% (p < 0,001). На штамме MRSA фотосенсибилизирующий эффект фотодитазина также проявлялся, но при воздействии лазерного излучения в больших дозах: доза 90 Дж/см² вызывала ингибицию роста микробов на 79% (р < 0,01), доза 180 Дж/см² – на 89% (p < 0,01).

Заключение. Таким образом, излучение красного лазера оказывает прямой бактериостатический эффект на рост метициллин-резистентного штамма золотистого стафилококка и менее значительный эффект – на рост метициллин-чувствительного штамма. Фотодитазин оказывает фотосенсибилизирующий эффект в отношении обоих штаммов золотистого стафилококка.

Вельшер Л.З., Стаханов М.Л., Цалко С.Э.

АППАРАТНЫЙ СКРИНИНГ ПИГМЕНТНЫХ ОБРАЗОВАНИЙ С ЦЕЛЬЮ РАННЕЙ ДИАГНОСТИКИ БОЛЬНЫХ МЕЛАНОМОЙ КОЖИ

ФГБОУ ВО «МГМСУ им. А.И. Евдокимова», г. Москва, Россия

Velsher L.Z., Stakhanov M.L., Tsalko S.E. (Moscow, RUSSIA)

HARDWARE SCREENING OF PIGMENTED LESIONS FOR EARLY DIAGNOSIS OF PATIENTS WITH SKIN MELANOMA

Обоснование и цель исследования. Выполнение адекватного радикального хирургического вмешательства по-прежнему остается основным, и как правило, единственно возможным лечением больного меланомой. Однако до настоящего времени не только онкологи, но и врачи других специальностей не обладают технологией, позволяющей быстро, объективно и достоверно отличить меланому от доброкачественного невуса.

Материалы и методы. Последние 15 лет мы успешно применяем установку для аутофлуоресцентной диагностики пигментных образований кожи, которая позволяет в течение одной минуты определить интенсивность пролиферации клеток пигментного или беспигментного новообразования кожи и соседнего с ним неизмененного участка кожи. Сравнение этих показателей может объективно оценить относительную интенсивность клеточной пролиферации данного новообразования и утверждать о его доброкачественном или злокачественном характере. В случае сомнительного результата повторное исследование через 1-2 месяца может оценить динамику показателя интенсивности пролиферации клеток данного образования. Нами обследовано более 1500 пигментных образований кожи. Из них 560 образований после исследования были удалены и подвергнуты морфологическому исследованию.

Результаты. Сравнение результатов гистологического исследования удаленных пигментных образований кожи с результатами оценки доброкачественного или злокачественного характера, определяемых по результатам аутофлуоресцентной диагностики активности пролиферации клеток этих же образований кожи, свидетельствует о достаточно высокой диагностической значимости данного метода. Так, чувствительность метода нами определена в 82,9%, а специфичность — 95,4%. Ложноположительный результат флуоресцентного исследования пигментных меланом кожи составил 17,1%, а ложноотрицательный — 5,98%.

Заключение. С учетом неинвазивности метода, простоты его осуществления, достаточно высокой достоверности результата, скорости его получения и отсутствия каких-либо нежелательных побочных эффектов и осложнений аппарат для аутофлуоресцентной диагностики пигментных новообразований кожи может быть рекомендован для повседневного применения в медицинской практике.

Герцен А.В., Джигкаев Т.Д.

МАЛОИНВАЗИВНЫЙ ФОТОДИНАМИЧЕСКИЙ МЕТОД ЛЕЧЕНИЯ БОЛЬНЫХ С ДОБРОКАЧЕСТВЕННЫМИ УЗЛОВЫМИ ОБРАЗОВАНИЯМИ ЩИТОВИДНОЙ ЖЕЛЕЗЫ

ФГБУ «НКЦ оториноларингологии ФМБА России», г. Москва, Россия

Hertzen A.V., Dzhigkaev T.D. (Moscow, RUSSIA)

A MINIMALLY INVASIVE PHOTODYNAMIC TECHNIQUE FOR TREATING PATIENTS WITH BENIGN THYROID NODULES

Обоснование и цель. Основным методом лечения большинства больных узловым нетоксическим и многоузловым нетоксическим зобом является хирургический способ. Операции на щитовидной железе все еще остаются одними из сложных в хирургии. Признавая в ряде случаев необходимость выполнения радикального оперативного вмешательства, многие хирурги в последние годы все чаще используют малоинвазивные технологии: деструкции узловых образований щитовидной железы этанолом, лазерным излучением.

Материалы и методы. Эксперимент выполняли на крысах-самцах линии Wistar массой 250–350 г. Всего в эксперименте участвовало 30 животных. Их содержали с учетом рекомендаций хронобиоза и хрономедицины. На основании экспериментальных исследований было установлено, что лизис здоровой железистой ткани в объеме до 1,0 см³ при фотодинамическом воздействии, проведенном в изученных клинически режимах, не наблюдался. ФДТ применена в лечении 75 больных с доброкачественными узловыми заболеваниями щитовидной жедезы.

Результаты. Проведенные исследования на животных помогли определить предельно допустимую дозу для лазерного излучения красного и инфракрасного диапазонов: λ 662 нм – 1000 Дж/см³; λ 810 нм – 174,5 Дж/см³. В клинике при использовании трех вариантов частотных характеристик фотодинамического воздействия (в непрерывном режиме: 1 – длина волны 662 нм, световая нагрузка – 150–350 Дж/см³; 2 – длина волны 662 нм, световая нагрузка – 60–70 Дж/см³; 3 – длина волны – 662 и 808 нм, световая нагрузка – 20–30 Дж/см³) в 84,6% случаев наблюдалась положительная динамика. Только в 14,4% случаев, где узлы были 3 см в диаметре и более, не было динамики. Уменьшение узлов констатировано при использовании различных вариантов частотных характеристик.

Заключение. В экспериментах на крысах показано, что использование метода фотодинамического воздействия на железистую ткань крыс не вызывает лизиса клеток эпителия. Определена предельно допустимая доза для лазерного излучения красного и инфракрасного диапазонов. Выявлены три варианта наилучших частотных, мощностных, временных характеристик двух длин волн (красное и инфракрасное излучение).

Гришачева Т.Г.^{1,2}, Малков Н.В.³, Михайлова И.А.^{1,2}, Петрищев Н.Н.^{1,2}

ВЛИЯНИЕ ФОТОАКТИВИРОВАННОГО КОПРОПОРФИРИНА III НА МИКРОЦИРКУЛЯЦИЮ

 1 ГБОУ ВПО «ПСПбГМУ им. академика И.П. Павлова» МЗ РФ,

г. Санкт-Петербург, Россия;

²ФГБУ «СЗФМИЦ им. В.А. Алмазова» МЗ РФ,

г. Санкт-Петербург, Россия;

³ ООО «НПФ «Элест», г. Санкт-Петербург, Россия

Grishacheva T.G., Malkov N.V., Mikhailova I.A., Petrischev N.N. (St-Peterburg, RUSSIA)

THE INFLUENCE OF PHOTOACTIVATED COPROPORPHYRIN III AT MICROCIRCULATION

Цель: изучение эффектов фотодинамического воздействия на сосуды микроциркуляторного русла при использовании в качестве фотосенсибилизатора копропорфирина III.

Материалы и методы. Исследования выполнены на крысах-самцах линии Вистар массой 250-350 г. Копропорфирин III в дозе 10 мг/кг вводили в хвостовую вену за час до облучения. Для исследования микроциркуляции использовали общепринятый метод биомикроскопии. В работе использовали макроскоп Wild M420, объектив (Makrozoom 6.3-32x) с добавочной линзой с двукратным увеличением, светодиодный осветитель. С помощью CCD-видеокамеры (Sony, Япония) производили видеозапись на персональный компьютер, и полученные данные обрабатывали с помощью программы Мульти Медиа Каталог (ММС версия 2.2, Россия). Объект исследования – артериолы диаметром 10-20 мкм, венулы диаметром 15-30 мкм. Облучение проводили на лазерном аппарате Лахта Милон (Милон групп, Санкт-Петербург), длина волны – 630 нм, мощностью до 0,5 Вт. Плотность мощности контролировали с помощью измерителя мошности Advantest O8230.

Результаты. При энергетической дозе 6 Дж/см² нарушений кровотока в сосудах микроциркуляторного русла не наблюдали; при дозе 12,6 Дж/см² отмечали преимущественно в венулах обратимое замедление кровотока; при дозе 56 Дж/см² происходила внутрисосудистая агрегация эритроцитов, значительное замедление кровотока, наблюдали явления сладжа. В контрольных опытах само по себе введение копропорфирина III без облучения и в опытах, в которых сосуды без копропорфирина III облучали в тех же дозах, не приводило к вышеописанным изменениям микроциркуляции.

Выводы. Фотоактивированный копропорфирин III оказывает влияние на микроциркуляцию, степень выраженности которого зависит от дозы облучения. При энергетической дозе 56 Дж/см² во всех сосудах происходит агрегация эритроцитов, наблюдается замедление кровотока вплоть до стаза.

Гусева И.А.¹, Куликова П.А.¹, Рогаткин Д.А.²

НАКОПЛЕНИЯ ФОТОСЕНСИБИЛИЗАТОРА В ЗДОРОВЫХ ОБЛУЧЕННЫХ ТКАНЯХ

 1 ГБУЗ МО «МОНИКИ им. М.Ф. Владимирского», г. Москва, Россия; 2 Национальный исследовательский ядерный университет «МИФИ», г. Москва, Россия

Guseva I.A., Kulikova P.A., Rogatkin D.A. (Moscow, RUSSIA)

PHOTOSENSITIZER ACCUMULATION IN HEALTHY IRRADIATED TISSUES

Обоснование. Методы лазерной флюоресцентной спектроскопии (ЛФС) часто применяются в качестве методов навигации в онкологии. Данные методы позволяют оценить флюоресценцию экзогенных фотосенсибилизаторов (ФС), избирательно накапливающихся в области опухоли, например, для определения границ патологии. Раннее нами было показано повышенное накопление ФС в области гипоксии и воспаления.

Цель исследования – изучить накопление ФС в здоровых тканях при воздействии на них ионизирующего излучения.

Материалы и методы. В эксперименте участвовала группа белых лабораторных мышей (n=21), правую конечность которых облучали на аппарате близкофокусной рентгенотерапии