Асташов В.В.¹, Майоров А.П.², Казаков О.В.³, Малыгин М.В.³

МОРФОЛОГИЧЕСКОЕ ИССЛЕДОВАНИЕ ЭКСПЕРИМЕНТАЛЬНОЙ ОПУХОЛИ МАТКИ ПРИ ФОТОДИНАМИЧЕСКОЙ ТЕРАПИИ

- ¹ ФГБНУ «Научно-исследовательский институт медицины труда», г. Москва, Россия;
- 2 ФГБУН «Институт лазерной физики СО РАН», г. Новосибирск, Россия:
- ³ ФГБНУ «Научно-исследовательский институт клинической и экспериментальной лимфологии», г. Новосибирск, Россия

Astashov V.V., Mayorov A.P., Kazakov O.V., Malygin M.V. (Moscow, Novosibirsk, RUSSIA)

MORPHOLOGICAL STUDIES ON THE TREATMENT OF EXPERIMENTAL TUMORS IN THE UTERUS WITH PHOTODYNAMIC THERAPY

Обоснование. В настоящее время актуальна разработка точных методов доставки фотосенсибилизаторов (Φ C) к опухоли, «направленная фотодинамическая терапия».

Целью работы являлось структурное исследование экспериментальной опухоли матки и подвздошных лимфатических узлов при проведении фотодинамической терапии (ФДТ) с различными способами введения ФС.

Материалы и методы. Работа выполнена на линейных мышах-самках (СВА) с массой 17-20 г, в возрасте 3 месяцев (ФГБУН «Институт цитологии и генетики СО РАН», Новосибирск). Животных разделили на следующие группы, по 10 в каждой: 1 – интактные животные; 2 – опухоль матки; 3 – опухоль матки при внутрибрюшинном (в/б,) введении ФС при ФДТ; 4 – опухоль матки при внутритканевом (лимфотропном, в/т) введении ФС при ФДТ. Опухоль моделировали путем введения в стенку правого маточного рога $6.5-7.5 \times 10^3$ клеток карциномы Эрлиха. Через 7 суток роста опухоли вводили раствор производного гематопорфирина – НрД (ПГП) (ФГУН ГНЦ ВБ «Вектор», «Институт медицинской биотехнологии») в дозе 10 мг/кг массы животного, под эфирным наркозом проводили лазерное облучение области проекции матки через 3 и 24 часа (доза – 200 Дж/см², твердотельный Nd:YAP-лазер, длина волны 608 нм, стендовая установка). Через сутки после 2-го облучения забирали для гистологического исследования фрагмент опухоли, подвздошные лимфатические узлы.

Результаты. В первичной опухоли матки при в/б введении ПГП очаги некроза составляли 42,61% от площади опухоли. На фоне в/т введения ПГП ядерно-цитоплазматическое соотношение в 1,5 раза меньше, чем в группе без коррекции, очаги некроза составляют 67,14% площади опухоли. При в/б введении ПГП площадь метастазов в лимфатическом узле по сравнению с группой без коррекции достоверно не изменяется, а при в/т площадь метастазов уменьшается на 10,04%.

Заключение. Адресная доставка фотосенсибилизатора ПГП через лимфатическую систему к очагу опухоли приводит к уменьшению тканевого и клеточного атипизма в первичной опухоли матки, сокращению площади метастазов в регионарных лимфатических узлах, уменьшению гибели животных на 5%.

Брилль Г.Е.¹, Егорова А.В.¹, Пономарев Г.В.²

ВЛИЯНИЕ КРАСНОГО ЛАЗЕРА НА РОСТ ПАТОГЕННЫХ СТАФИЛОКОККОВ И ФОТОДИНАМИЧЕСКИЙ ЭФФЕКТ ФОТОДИТАЗИНА

- ¹ Государственный медицинский университет им. В.И. Разумовского, г. Саратов, Россия;
- г. Саратов, Россия,

 ² Институт биомедицинской химии им. В.Н. Ореховича РАМН,
- г. Москва. Россия

Brill G.E., Egorova A.V., Ponomarev G.V. (Saratov, Moscow, RUSSIA)

EFFECTS OF RED LASER LIGHT AT THE GROWTH OF PATHOGENIC STAPHYLOCOCCUS BACTERIA AND PHOTODITAZIN PHOTODYNAMIC EFFECT

Обоснование и цель. В связи с возрастающей лекарственной устойчивостью микробов актуальным является изыскание способов немедикаментозной ингибиции их роста. В настоящей работе изучены влияние полупроводникового красного лазера ($\lambda - 660$ нм) и эффект фотодитазина на рост стафилококков в клеточных культурах.

Материалы и методы. В работе использованы метициллин-чувствительный (MSSA) и метициллин-резистентный (MRSA) штаммы золотистого стафилококка. Микробов облучали в жидкой питательной среде. После облучения микробов высаживали на плотную питательную среду и изучали количество бактериальных колоний (КОЕ). Энергетическая экспозиция составляла 60, 90 и 180 Дж/см². В качестве фотосенсибилизатора использовали фотодитазин (5 × 10-6M).

Результаты. Опыты показали, что предварительное лазерное облучение штамма MSSA оказывает бактериостатический эффект лишь при использовании высокой дозы (180 Дж/см²), при этом ингибиция роста составила 36%, р < 0,02). Облучение штамма стафилококков MRSA вызывает отчетливый угнетающий эффект при применении всех доз облучения: при дозе 60 Дж/см^2 наблюдали угнетение роста на 56% (p < 0,05), при дозе 90 Дж/см 2 – на 61% (p < 0,05), при дозе 180 Дж/см 2 – на 67% (р < 0,02). Предварительная обработка клеток золотистого стафилококка MSSA-штамма фотодитазином заметно усиливала бактериостатический эффект лазерного излучения: облучение микробов в дозе 60 Дж/см² вызывало угнетение роста колоний на 66% (p < 0,01), 90 Дж/см² – на 73% (p < 0,001), $180 \, \text{Дж/см}^2$ – на 81% (p < 0,001). На штамме MRSA фотосенсибилизирующий эффект фотодитазина также проявлялся, но при воздействии лазерного излучения в больших дозах: доза 90 Дж/см² вызывала ингибицию роста микробов на 79% (р < 0,01), доза 180 Дж/см² – на 89% (p < 0,01).

Заключение. Таким образом, излучение красного лазера оказывает прямой бактериостатический эффект на рост метициллин-резистентного штамма золотистого стафилококка и менее значительный эффект – на рост метициллин-чувствительного штамма. Фотодитазин оказывает фотосенсибилизирующий эффект в отношении обоих штаммов золотистого стафилококка.

Вельшер Л.З., Стаханов М.Л., Цалко С.Э.

АППАРАТНЫЙ СКРИНИНГ ПИГМЕНТНЫХ ОБРАЗОВАНИЙ С ЦЕЛЬЮ РАННЕЙ ДИАГНОСТИКИ БОЛЬНЫХ МЕЛАНОМОЙ КОЖИ

ФГБОУ ВО «МГМСУ им. А.И. Евдокимова», г. Москва, Россия

Velsher L.Z., Stakhanov M.L., Tsalko S.E. (Moscow, RUSSIA)

HARDWARE SCREENING OF PIGMENTED LESIONS FOR EARLY DIAGNOSIS OF PATIENTS WITH SKIN MELANOMA

Обоснование и цель исследования. Выполнение адекватного радикального хирургического вмешательства по-прежнему остается основным, и как правило, единственно возможным лечением больного меланомой. Однако до настоящего времени не только онкологи, но и врачи других специальностей не обладают технологией, позволяющей быстро, объективно и достоверно отличить меланому от доброкачественного невуса.

Материалы и методы. Последние 15 лет мы успешно применяем установку для аутофлуоресцентной диагностики пигментных образований кожи, которая позволяет в течение одной минуты определить интенсивность пролиферации клеток пигментного или беспигментного новообразования кожи и соседнего с ним неизмененного участка кожи. Сравнение этих показателей может объективно оценить относительную интенсивность клеточной пролиферации данного новообразования и утверждать о его доброкачественном или злокачественном характере. В случае сомнительного результата повторное исследование через 1-2 месяца может оценить динамику показателя интенсивности пролиферации клеток данного образования. Нами обследовано более 1500 пигментных образований кожи. Из них 560 образований после исследования были удалены и подвергнуты морфологическому исследованию.